Over the past few weeks, we’ve examined the three major methods used to set return expectations as part of the portfolio allocation process. Those methods were historical averages, discounted cash flow models, and risk premia models. Today, we’ll bring all these models together to compare and contrast their accuracy.
Before we make these comparisons, we want to remind readers that we’re now including a python version of the code we use to produce our analyses and graphs.
In our last post, we applied machine learning to the Capital Aset Pricing Model (CAPM) to try to predict future returns for the S&P 500. This analysis was part of our overall project to analyze the various methods to set return expectations when seeking to build a satisfactory portfolio. Others include historical averages and discounted cash flow models we have discussed in prior posts. Our provisional analysis suggested that the CAPM wasn’t a great forecasting model.
Over the last few posts, we’ve discussed methods to set return expectations to construct a satisfactory portfolio. These methods are historical averages, discounted cash flow models, and risk premia. our last post, focused on the third method: risk premia. Using the Capital Asset Pricing Model (CAPM) one can derive the required return for a particular asset based on the market price of risk, the asset’s risk, and the asset’s correlation with the market.
Our last post discussed using the discounted cash flow model (DCF) as a method to set return expectations that one would ultimately employ in building a satisfactory portfolio. We noted that if one were able to have a reasonably good estimate of the cash flow growth rate of an asset, then it would be relatively straightforward to calculate the required return.
The problem, of course, is figuring out what the cash flow growth rate should be.
The oil-to-gas ratio was recently at its highest level since October 2013, as Middle East saber-rattling and a recovering global economy supported oil, while natural gas remained oversupplied despite entering the major draw season. Even though the ratio has eased in the last week, it remains over one standard deviation above its long-term average. Is now the time to buy chemical stocks leveraged to the ratio? Or is this just another head fake foisted upon unsuspecting generalists unaccustomed to the vagaries of energy volatility?
The CBOE’s SKEW index has attracted some headlines among the press and blogosphere, as readings approach levels not see in the last year. If the index continues to draw attention, doomsayers will likely say this predicts the next correction or bear market. Perma-bulls will catalogue all the reasons not to worry. Our job will be to look at the data and to see what, if anything, the SKEW divines. If you don’t know what the SKEW is, we’ll offer a condensed definition.
In our previous post we ran two investing strategies based on Apple’s last twelve months price-to-earnings multiple (LTM P/E). One strategy bought Apple’s stock when its multiple dropped below 10x and sold when it rose above 20x. The other bought the stock when the 22-day moving average of the multiple crossed above the current multiple and sold when the moving average crossed below. In both cases, annualized returns weren’t much different than the benchmark buy-and-hold, but volatility was, resulting in significantly better risk-adjusted returns.
In our last post on valuation, we looked at whether Apple’s historical mutiples could help predict future returns. The notion was that since historic price multiples (e.g., price-to-earnings) reflect the market’s value of the company, when the multiple is low, Apple’s stock is cheap, so buying it then should produce attractive returns. However, even though the relationship between multiples and returns was significant over different time horizons, its explanatory power was pretty low.
Stock analysts are usually separated into two philosophical camps: fundamental or technical. The fundamental analyst uses financial statements, economic forecasts, industry knowledge, and valuation to guide his or her investment process. The technical analyst uses prices, charts, and a whole host of “indicators”. In reality, few stock analysts are purely fundamental or technical, usually blending a combination of the tools based on temperament, experience, and past success. Nonetheless, at the end of the day, the fundamental analyst remains most concerned with valuation, while the technical focuses on price action.
Don’t hold your breath. We’re taking a break from our deep dive into diversification. We know how you couldn’t wait for the next installment. But we thought we should revisit our previous post on investing strategies to mix things up a bit. Recall we investigated whether employing a 200-day moving average tactical allocation would improve our risk-return proflie vs. simply holding a large cap index like the S&P500.
What we learned when we calculated rolling twenty-year cumulative returns was that the moving average strategy outperformed the S&P 500 76% of the time.