Data Science

Sequential satisficing

In our last post, we ran simulations on our 1,000 randomly generated return scenarios to compare the average and risk-adjusted return for satisfactory, naive, and mean-variance optimized (MVO) maximum return and maximum Sharpe ratio portfolios.1 We found that you can shoot for high returns or high risk-adjusted returns, but rarely both. Assuming no major change in the underlying average returns and risk, choosing the efficient high return or high risk-adjusted return portfolio generally leads to similar performance a majority of the time in out-of-sample simulations.

I like to MVO it!

In our last post, we ran through a bunch of weighting scenarios using our returns simulation. This resulted in three million portfolios comprised in part, or total, of four assets: stocks, bonds, gold, and real estate. These simulations relaxed the allocation constraints to allow us to exclude assets, yielding a wider range of return and risk results, while lowering the likelihood of achieving our risk and return targets. We bucketed the portfolios to simplify the analysis around the risk-return trade off.

Testing expectations

In our last post, we analyzed the performance of our portfolio, built using the historical average method to set return expectations. We calculated return and risk contributions and examined changes in allocation weights due to asset performance. We briefly considered whether such changes warranted rebalancing and what impact rebalancing might have on longer term portfolio returns given the drag from taxes. At the end, we asked what performance expectations we should have had to analyze results in the first place.

Performance anxiety

In our last post, we took a quick look at building a portfolio based on the historical averages method for setting return expectations. Beginning in 1987, we used the first five years of monthly return data to simulate a thousand possible portfolio weights, found the average weights that met our risk-return criteria, and then tested that weighting scheme on two five-year cycles in the future. At the end of the post, we outlined the next steps for analysis among which performance attribution and different rebalancing schemes were but a few.

Portfolio simulations

In our last post, we compared the three most common methods used to set return expectations prior to building a portfolio. Of the three—historical averages, discounted cash flow models, and risk premia models—no single method dominated the others on average annual returns over one, three, and five-year periods. Accuracy improved as the time frame increased. Additionally, aggregating all three methods either by averaging predictions, or creating a multivariate regression from the individual explanatory variables, performed better than two out of the three individual methods.

Discounted expectations

After our little detour into GARCHery, we’re back to discuss capital market expectations. In Mean expectations, we examined using the historical average return to set return expectations when constructing a portfolio. We noted hurdles to this approach due to factors like non-normal distributions, serial correlation, and ultra-wide confidence intervals. While we highlighted these obstacles and offered a few suggestions to counteract such drawbacks, on first blush it didn’t seem like historical averages were all that satisfactory.

Mean expectations

We’re taking a break from our extended analysis of rebalancing to get back to the other salient parts of portfolio construction. We haven’t given up on the deep dive into the merits or drawbacks of rebalancing, but we feel we need to move the discussion along to keep the momentum. This should ultimately tie back to rebalancing, but from a different angle. We’ll now start to examine capital market expectations.

Rebalancing ruminations

Back in the rebalancing saddle! In our last post on rebalancing, we analyzed whether rebalancing over different periods would have any effect on mean or risk-adjusted returns for our three (equal, naive, and risky) portfolios. We found little evidence that returns were much different whether we rebalanced monthly, quarterly, yearly, or not at all. Critically, as an astute reader pointed out, if these had been taxable accounts, the rebalancing would likely have been a drag on performance.

Drawdowns by the data

We’re taking a break from our series on portfolio construction for two reasons: life and the recent market sell-off. Life got in the way of focusing on the next couple of posts on rebalancing. And given the market sell-off we were too busy gamma hedging our convexity exposure, looking for cheap tail risk plays, and trying to figure out when we should go long the inevitable vol crush. Joking. We’re not even sure what any of that means.

Benchmarking the portfolio

In our last post, we looked at one measure of risk-adjusted returns, the Sharpe ratio, to help our hero decide whether he wanted to alter his portfolio allocations. Then, as opposed to finding the maximum return for our hero’s initial level of risk, we broadened the risk parameters and searched for portfolios that would at least offer the same return or better as his current portfolio and would also allow him to find a “comfortable” asset allocation.